आंशिक अवकल समीकरणों का सिद्धांत (तथा इससे संबंधित क्षेत्र जैसे-
4.
यह दीर्घवृत्तीय आंशिक अवकल समीकरण है जो विद्युतस्थैतिकी, यांत्रिक इंजीनिररी तथा सैद्धांतिक भौतिकी में बहुत प्रयुक्त होता है।
5.
यह दीर्घवृत्तीय आंशिक अवकल समीकरण है जो विद्युतस्थैतिकी, यांत्रिक इंजीनिररी तथा सैद्धांतिक भौतिकी में बहुत प्रयुक्त होता है।
6.
महत्वपूर्ण आंशिक अवकल समीकरण है जो किसी वस्तु के किसी क्षेत्र में समय के साथ ताप की स्थिति बताता है।
7.
उष्मा समीकरण (heat equation) महत्वपूर्ण आंशिक अवकल समीकरण है जो किसी वस्तु के किसी क्षेत्र में समय के साथ ताप की स्थिति बताता है।
8.
गणितीय भौतिक शास्त्र के निर्धारित सीमांत के मानवाले निर्मेयों के (जिनमें आंशिक अवकल समीकरण के अनुकलन की आवश्यकता हो) हल की आधुनिक विधियों के लिए, यह मूल पुस्तक है।
9.
कौशी समस्या गणित में उन आंशिक अवकल समीकरणों के हल से सम्बंधित है जो कुछ शर्तों का पालन करती हैं जो प्रांत के ऊनविम पृष्ठ पर दिए गये हैं।
10.
फुरिअर विश्लेष्ण का भौतिकी, आंशिक अवकल समीकरण (पार्शिअल डिफरेंशिअल एक्वेशन्स), संख्या सिद्धान्त, क्रमचय/संचय, संकेत प्रसंस्करण, इमेगिंग, प्रायिकता सिद्धान्त, सांख्यिकी, क्रिप्टोग्राफी, आंकिक विश्लेषण (न्युमेरिकल एनालिसिस), ध्वनि विज्ञान, प्रकाशिकी, समुद्रशास्त्र (ओसीनोग्रफी), ज्यामिति आदि अनेक क्षेत्रों में प्रयोग होता है।