किसी भी समिश्र संख्या को a + bi, के रूप में व्यक्त किया जा सकता है जिसमें a और b दोनो ही वास्तविक संख्याएं हैं।
12.
मान लीजिए आप जानते हैं कि कुछ वास्तविक संख्याएं x मौजूद हैं जहां p (x) = 0 (उदाहरण के लिए यदि n विषम है और a गैर-शून्य है, तब मध्यवर्ती प्रमेय मान की वजह से).
13.
यह साबित हो सकता है कि अपरिमेय संख्याएं विशिष्ट रूप से ऐसी वास्तविक संख्याएं हैं जिन्हें समापक या सतत दशमलव के रूप में नहीं दर्शाया जा सकता है, हालांकि गणितज्ञ इसे परिभाषा के रूप में नहीं लेते हैं.
14.
यह साबित हो सकता है कि अपरिमेय संख्याएं विशिष्ट रूप से ऐसी वास्तविक संख्याएं हैं जिन्हें समापक या सतत दशमलव के रूप में नहीं दर्शाया जा सकता है, हालांकि गणितज्ञ इसे परिभाषा के रूप में नहीं लेते हैं.