हालांकि उपरोक्त दलील दोनों मामलों के बीच निर्णय नहीं करती, गेल्फोंड-श्नाईडर प्रमेय का तात्पर्य है कि √2 अबीजीय है, इसलिए अपरिमेय है.
32.
हालांकि उपरोक्त दलील दोनों मामलों के बीच निर्णय नहीं करती, गेल्फोंड-श्नाईडर प्रमेय का तात्पर्य है कि √2√ 2 अबीजीय है, इसलिए अपरिमेय है.
33.
क्योंकि बीजीय संख्या एक क्षेत्र गठित करते हैं, कई अपरिमेय संख्याओं को बीजीय और अबीजीय संख्याओं के संयोजन द्वारा निर्मित किया जा सकता है.
34.
क्योंकि बीजीय संख्या एक क्षेत्र गठित करते हैं, कई अपरिमेय संख्याओं को बीजीय और अबीजीय संख्याओं के संयोजन द्वारा निर्मित किया जा सकता है.
35.
अबीजीय फलनों के मान f (x) को इसके चर x के योग, घटाना, गुणन, भाग, घात एवं मूल की सीमित बीजीय संक्रियाओं के द्वारा अभिव्यक्त नहीं किया जा सकता।
36.
चार्ल्स हर्मिट (1873) ने सबसे पहले e अबीजीय को साबित किया और फर्डिनेंड वॉन लिंडेमन (1882) ने हर्मिट के निष्कर्ष से शुरू करते हुए, π के लिए यही दर्शाया.
37.
बाद में, जोर्ज कैंटर (1873) ने एक भिन्न तरीके से उनके अस्तित्व को साबित कर दिया, जिसमें दर्शाया गया कि वास्तविक में हर अंतराल में अबीजीय संख्या शामिल होती है.
38.
बाद में, जोर्ज कैंटर (1873) ने एक भिन्न तरीके से उनके अस्तित्व को साबित कर दिया, जिसमें दर्शाया गया कि वास्तविक में हर अंतराल में अबीजीय संख्या शामिल होती है.
39.
उन्नीसवीं शताब्दी में जटिल संख्याओं के सिद्धांत के पूर्ण होने के लिए अपरिमेय का बीजीय और अबीजीय संख्या में विभेदन, अबीजीय संख्या के अस्तित्व का सबूत, और अपरिमेय सिद्धांत के वैज्ञानिक अध्ययन का पुनरुत्थान आवश्यक था जिसकी यूक्लिड के बाद से बड़े पैमाने पर उपेक्षा की गई.
40.
उन्नीसवीं शताब्दी में जटिल संख्याओं के सिद्धांत के पूर्ण होने के लिए अपरिमेय का बीजीय और अबीजीय संख्या में विभेदन, अबीजीय संख्या के अस्तित्व का सबूत, और अपरिमेय सिद्धांत के वैज्ञानिक अध्ययन का पुनरुत्थान आवश्यक था जिसकी यूक्लिड के बाद से बड़े पैमाने पर उपेक्षा की गई.