| 1. | Quotients of the Dedekind eta function at imaginary quadratic arguments may be integral.
|
| 2. | This last being the Euler function, which is closely related to the Dedekind eta function.
|
| 3. | Where \ eta is the Dedekind eta function.
|
| 4. | We know very little about how ETA functions.
|
| 5. | Is there inverse function for eta function.
|
| 6. | Color representation of the Dirichlet eta function.
|
| 7. | The algorithm, making use of Chebyshev polynomials, is described in the article on the Dirichlet eta function.
|
| 8. | The eta function is defined by an alternating Dirichlet series, so this method parallels the earlier heuristics.
|
| 9. | For all, where is the gamma function, and related to a special value of the Dedekind eta function.
|
| 10. | It can be related to the Dedekind eta function, a modular form of weight 1 / 2, as,
|